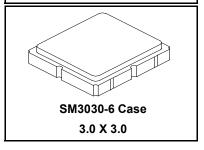


• Ideal for 916.650 MHz FCC Part 15 Transmitters

- Very Low Series Resistance
- Quartz Stability
- Complies with Directive 2002/95/EC (RoHS)
- Tape and Reel Standard per ANSI/EIA-481
- Moisture Sensitivity Level: 1
- AEC-Q200 Qualified


The RO3144E-3 is a true one-port, surface-acoustic-wave (SAW) resonator in a surface-mount ceramic case. It provides reliable, fundamental-mode stabilization of fixed-frequency transmitters operating at 916.650 MHz. This SAW is designed specifically for remote-control and data-link transmitters operating in the USA under FCC Part 15 regulations.

Absolute Maximum Ratings

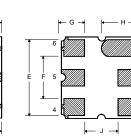
Rating	Value	Units
Input Power Level	0	dBm
DC Voltage	12	VDC
Storage Temperature	-40 to +125	°C
Operating Temperature Range	-40 to +90	°C

RO3144E-3

916.650 MHz SAW Resonator

Electrical Characteristics

Characteristic		Sym	Notes	Minimum	Typical	Maximum	Units
Frequency (+25 °C) Nominal Frequency		f _C		916.550		916.750	MHz
Tolerance from 916.650 MHz		Δf_C				±100	kHz
Insertion Loss		IL		1	1.2	1.6	dB
Quality Factor	Unloaded Q	QU			6400		
	50 Ω Loaded Q	QL			780		
Temperature Stability	Turnover Temperature	Τ _Ο		15	25	35	°C
	Turnover Frequency	f _O			fc		MHz
	Frequency Temperature Coefficient	FTC			0.032		ppm/°C ²
Frequency Aging	Absolute Value during the First Year	fA			10		ppm
DC Insulation Resistance between Any Two Terminals				1.0			MΩ
RF Equivalent RLC Model	Motional Resistance	R _M			14		Ω
	Motional Inductance	L _M			15.4		μH
	Motional Capacitance	CM			1.9		fF
	Transducer Static Capacitance	C _P			1.9		pF
Test Fixture Shunt Inductance		L _{TEST}			16		nH
Lid Symbolization: Y = Year, WW = Week, S = Shift		800, <u>YWWS</u>					
Standard Reel Quantity	Reel Size 7 Inch				500 Pie	ces / Reel	
	Reel Size 13 Inch	3000 Pieces / Reel					



- 1. The design, manufacturing process, and specifications of this device are subject to change.
- 2. US or International patents may apply.
- 3. RoHS compliant from the first date of manufacture.

Electrical Connections

The SAW resonator is bidirectional and may be installed with either orientation. The two terminals are interchangeable and unnumbered. The callout NC indicates no internal connection. The NC pads assist with mechanical positioning and stability. External grounding of the NC pads is recommended to help reduce parasitic capacitance in the circuit.

[†]	— в ——	
	SMMX 008	6 5 4

Pin

1

2

3

4

5

6

Connection

NC

Terminal

NC

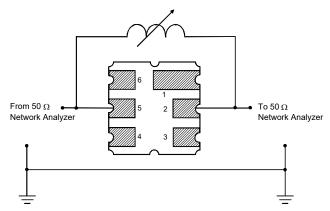
NC

Terminal

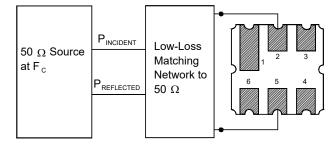
NC

Case Dimensions

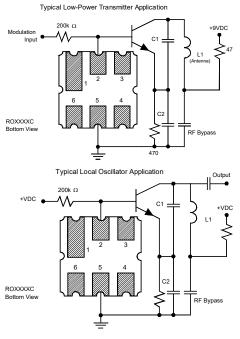
Dimension	mm			Inches			
	Min	Nom	Max	Min	Nom	Мах	
Α	2.87	3.0	3.13	0.113	0.118	0.123	
В	2.87	3.0	3.13	0.113	0.118	0.123	
С	1.12	1.25	1.38	0.044	0.049	0.054	
D	0.77	0.90	1.03	0.030	0.035	0.040	
E	2.67	2.80	2.93	0.105	0.110	0.115	
F	1.47	1.6	1.73	0.058	0.063	0.068	
G	0.72	0.85	0.98	0.028	0.033	0.038	
н	1.37	1.5	1.63	0.054	0.059	0.064	
I	0.47	0.60	0.73	0.019	0.024	0.029	
J	1.17	1.30	1.43	0.046	0.051	0.056	

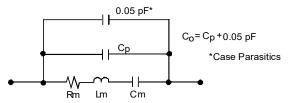

п

Typical Test Circuit

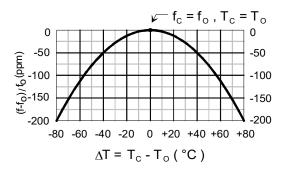

The test circuit inductor, $\ensuremath{\mathsf{L}}_{\ensuremath{\mathsf{TEST}}}$, is tuned to resonate with the static

capacitance, C_{O} , at F_{C} .

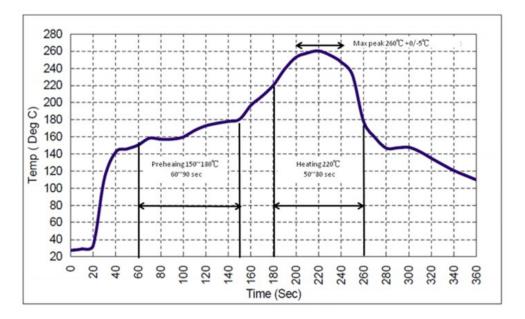

Electrical Test


Power Test

Typical Application Circuits



Equivalent LC Model


Temperature Characteristics

The curve shown on the right accounts for resonator contribution only and does not include LC component temperature contributions.

Recommended Reflow Profile

- 1. Preheating shall be fixed at 150~180°C for 60~90 seconds.
- 2. Ascending time to preheating temperature 150°C shall be 30 seconds min.
- 3. Heating shall be fixed at 220°C for 50~80 seconds and at 260°C +0/-5°C peak (10 seconds).
- 4. Time: 5 times maximum.

