· Remark: Bandwidth & Peak Gain was measured under evaluation board of next page

Frequency Range

2450 MHz

Package **Dimensions**

-40°C ~ +110°C

4 W

10 sec. (@ 260°C)

Linear

Omni-directional

Ni / Au (Leadless)

2.05 x 1.23 x 0.45 mm

Table 1								
Parameter	Specification							
Central Frequency	2450 MHz							
Bandwidth	85 MHz (Min.)							
Return Loss	-6.5 dB(Max)							
Peak Gain	1.72 dBi							
Impedance	50 Ohm							

1.Scope

This specification covers the dielectric chip antenna for Bluetooth / WLAN Applications.

2.Name of the product

No

1

2

3

4

5

6

7

8

9

10

11

This product is named "Dielectric Chip Antenna".

3.Electrical characteristics

3-1 Electrical characteristics of antenna

Operating Temperature

Resistance to Soldering Heats

Maximum Power

Azimuth Beam width

Polarization

Termination

The antenna has the electrical characteristics given in Table 1 under the standard installation conditions shown in the figure of Evaluation Board.

- 4. Antenna & Demo Board Dimension
 - 4-1 Antenna Dimension

	Dimension (mm)
L	2.05 ± 0.20
W	1.23 ± 0.20
т	0.45 ± 0.20

4-2 Recommended PCB Pattern Evaluation Board Dimension (board size 80x40mm)

Feed Line TOP Copper VIA

2nd Evaluation Board Dimension Evaluation Board Dimension (board size 80x40mm)

1	. •	- 1	•	٠	٠	1	٠	٠	٠	٠	*	٠	٠			• •	•	•	•	•					•	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠		٠	٠		•	•	
	Ĩ.,					, č					1			٠		_											٠					۰					٠					•
	•													1		• *	•	•	•	•	•	• •	•	•	• •																	
	•										•				•																											
															•												•															1
															٠							•					٠										. *					,
	•										•				•								÷.,																			
	• `			۰.	۰.	٠	٦.	÷.	÷.	•		1			•		. 1	•	٠.	÷.	1		÷.	÷.	2	÷.		٠.	÷.	÷.	÷.		-	1	÷.	÷.		۰.	÷.,	÷.,	۰.	
																	۰.										-										-				1	1
											- 1						٠					٠					٠					٠					٠					•
	•					•					*		٠		•		•																									•
	•										٠																															
	• .												1		٠		Τ.					Ĩ					Ť					1									. 1	1
	•			Ť.,	Ť.,		Ť	Ĩ.,	Ť.	Ť.		Ĩ.,					•	Č	Ť.,	Ξ.	×.		, Ť		Ť	Ĩ.		1	Ĩ.	Ť.,	Č.		Ť.,		Ť.,	Ξ.		Ť.,	÷.,	÷.,	Ξ,	
	•																•																				1					1
	•										•						٠					•					٠										. •					•
	•																•																									
	_																																									
	٠.		•	•	•	1	٠	٠	٠	٠		•	•	•	•		ī.,	•	•	•	•			•	٠	•	. 7	٠	•	٠	٠	-	•	٠	٠					•	÷.	1
	•					٠					•						•					٩					٠										*					•
	•										•						•																									
	•					•					•						•					•					•					•					*					۴
	•																•						1																		1.1	•
1				•														•	•																				-			

Suggest Matching Circuit

Note:

Suggest using low tolerance component, inductor ±0.1~0.3nH, Capacitor ±0.1pF

Layout Dimensions in Clearance area (Size=3.0*5.0mm)

2nd Layout Dimensions in Clearance area (Size=8.0*2.5mm)

5.Measurement Results

Return Loss

Radiation Pattern

	Efficiency	Peak Gain	Directivity
2400MHz	63.12 %	1.62dBi	3.61dBi
2450MHz	70.56 %	1.72dBi	3.23dBi
2500MHz	65.48 %	1.64dBi	3.47dBi

Chamber Coordinate System

6. Reliability and Test Conductions

ITEM	REQUIREMENTS	TEST CONDITION						
solder ability	1. Wetting shall exceed 90% coverage 2. No visible mechanical damage. TEMP (°C) 230°C 150°C 60sec	Pre-heating temperature: 150°C/60sec. Solder temperature: 230±5°C Duration: 4±1sec. Solder:Sn-Ag3.0-Cu0.5 Flux for lead free: ros						
Solder heat Resistance	1. No visible mechanical damage. 2. Central Freq. change :within ± 6% TEMP (°C) 260°C 150°C 60sec	Pre-heating temperature: 150°C/60sec. Solder temperature: 260±5°C Duration: 10±0.5sec. Solder:Sn-Ag3.0-Cu0.5 Flux for lead free: rosin						
Component Adhesion (Push test)	1. No visible mechanical damage.	The device should be reflow soldered (230±5°C for 10sec.) to a tinned copper substrate A dyna meter force gauge should be applied the side of the component. The device must with-ST-F 0.5 Kg without failure of the Termination attached to component.						
Component Adhesion (Pull test)	1. No visible mechanical damage.	Insert 10cm wire into the remaining open eye bend, the ends of even wire lengths upward and wind together. Terminal shall not be remarkably damaged.						
Thermal shock	1. No visible mechanical damage.2. Central Freq. change :within $\pm 6\%$ PhaseTemperature(°C)Time(min)1 $\pm 110\pm 5^{\circ}$ C 30 ± 3 2RoomWithin2Temperature $3sec$ 3 $-40\pm 2^{\circ}$ C 30 ± 3 4RoomWithin7Temperature $3sec$	+110°C=>30±3min -40°C=>30±3min Test cycle:10 cycles The chip shall be stabilized at normal condition for 2~3 hours before measuring.						
Resistance to High Temperature	 No visible mechanical damage Central Freq. change :within ±6% No disconnection or short circuit. 	Temperature: +110±5°C Duration: 1000±12hrs The chip shall be stabilized at normal condition for 2~3 hours before measuring.						
Resistance to Low Temperature	 No visible mechanical damage Central Freq. change :within ±6% No disconnection or short circuit. 	Temperature:-40±5℃ Duration: 1000±12hrs The chip shall be stabilized at normal condition for 2~3 hours before measuring.						
Humidity	 No visible mechanical damage Central Freq. change :within ±6% No disconnection or short circuit. 	Temperature: 40±2°C Humidity: 90% to 95% RH Duration: 1000±12hrs The chip shall be stabilized at normal Condition for 2~3 hours before measuring.						

7. Soldering and Mounting

Mildly activated rosin fluxes are preferred. The minimum amount of solder can lead to damage from the stresses caused by the difference in coefficients of expansion between solder, chip and substrate. The terminations are suitable for all wave and re-flow soldering systems. If hand soldering cannot be avoided, the preferred technique is the utilization of hot air soldering tools.

Recommended temperature profiles for re-flow soldering in Figure 1.

Products attachment with a soldering iron is discouraged due to the inherent process control limitations. In the event that a soldering iron must be employed the following precautions are recommended.

- Preheat circuit and products to 150° C
- Never contact the ceramic with the iron tip
- Use a 20 watt soldering iron with tip diameter of 1.0mm
- 280°C tip temperature (max)
- 1.0mm tip diameter (max)
- Limit soldering time to 3 sec.

8. Packaging Information

7" x 8 mm

Tape Width(mm)	A(mm)	B(mm)	C(mm)	D(mm)	Chip/Reel(pcs)
8	9.0±0.5	60±2	13.5±0.5	178±2	3000

9. Storage and Transportation Information

Storage Conditions

To maintain the solder ability of terminal electrodes:

- 1. Temperature and humidity conditions: -10~ 40 °C and 30~70% RH.
- 2. Recommended products should be used within 6 months from the time of delivery.
- 3. The packaging material should be kept where no chlorine or sulfur exists in the air.

Transportation Conditions

- 1. Products should be handled with care to avoid damage or contamination from perspiration and skin oils.
- 2. The use of tweezers or vacuum pick up is strongly recommended for individual components.
- 3. Bulk handling should ensure that abrasion and mechanical shock are minimized.